博彩导航

设为博彩导航 | 加入收藏 | 宁波大学
博彩导航
博彩导航博导概况 师资队伍科学研究人才培养党群工作学生工作校友之家招聘信息内部信息English
博彩导航
 学院新闻 
 通知通告 
 学术活动 
 学生工作 
 人才培养 
 
当前位置: 博彩导航>>博彩导航>>学术活动>>正文
甬江数学讲坛424讲(2024年第10讲)-- On recent progress of chiral de Rham complex and modular forms
2024-03-13 08:51     (点击:)

报告时间:2024315 下午14:00开始

人:戴烜中京都大学数理解析研究所 研究员

报告地点:包玉书9号楼305

报告题目:On recent progress of chiral de Rham complex and modular forms

报告摘要:In 1994, D. Zagier, Y. Manin, and W. Eholzer speculated that the Rankin-Cohen brackets of modular forms should be related to vertex operator algebras. However it looks very difficult to connect the axioms of operations of modular forms and vertex algebras. Our attempt involves sheaf constructions known as the chiral de Rham complex (CDR), whose cohomology is linked to the Witten genus. Instead of constructing sheaf of vertex algebras on modular curves directly, we start from CDR on the upper half plane and consider the invariant sections under the action of congruence subgroups. In this talk, we will explain that modular forms appears naturally on invariant sections.

报告人简介: 戴烜中京都大学数理解析研究所,研究员。主要研究方向为顶点算子代数和模形式。在 Adv. Math.IMRN等国际知名杂志发表多篇高水平论文。


关闭窗口
宁波大学 | 图书馆